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On the State-Space Representation of Local
Affine Models in Takagi-Sugeno-Kang
Fuzzy Systems

Zur Zustandsdarstellung von Takagi-Sugeno-Kang-Fuzzy-Systemen
mit Lokal Affinen Modellen

Andreas Kroll

Considering the constant terms in the local models of dynamic Takagi-Sugeno—Kang fuzzy
models can provide for improved prediction quality. However, the constant terms have
typically not been treated analytically in analysis and controller design. In this paper, mini-
mal state-space representations are derived from local affine input/output models for usage
in TSK fuzzy models. Transformation algorithms for structure, parameters and initial values
are proposed.

Die Berlicksichtigung der konstanten Terme in den lokalen Modellen dynamischer Takagi—
Sugeno—Kang-Fuzzy-Modelle erméglicht eine erhdhte Pradiktionsqualitat. Jedoch werden
diese konstanten Terme typischerweise bei Systemanalyse und Reglerentwurf nicht ana-
lytisch beriicksichtigt. Im Beitrag werden lokale Modelle in minimaler Zustandsdarstellung
aus affinen Modellen in Ein-/Ausgangsform fiir die Verwendung in TSK-Fuzzy-Modellen
hergeleitet. Umrechnungsvorschriften fiir Modellstruktur und -parameter sowie fiir An-
fangswerte werden angegeben.

Keywords: Takagi—Sugeno—Kang fuzzy systems, affine models

Schlagwérter: Takagi—Sugeno—Kang-Fuzzy-Systeme, affine Modelle

1 Introduction design concepts from linear system theory such as local
pole placement. Discrete-time systems are considered.

Regime-wise modeling is an approach to decompose com-ry,, paper is organized as following: The next sec-
plex nonlinear global models into a set of easier-to-handleyjo, oyerviews related work. Section 3 recalls dynamical
local models. Takagi-Sugeno-Kang (TSK) fuzzy Systems rgi fuzzy models. Transformation of TSK model in in-
follow this concept. Published work on TSK-systems typic- ,,yqutput (1/0) form into state-space form is discussed in
ally focuses on either fuzzy modeling or on fuzzy control. gaction 4 and illustrated with an example in Section 5.
Algorithms on system identification typically provide for gaction 6 and 7 summarizes the paper. For enhanced read-

dynamic TSK fuzzy models with affine conc!usions of ability proofs have been moved to the appendix.
the local models. This means, each conclusion features

a constant term besides delayed input and output terms.
However, contributions addressing TSK fuzzy model—basedz Related Work
controller design typically assume models with linear con-

clusions to permit applying methods from linear system ggyeral concepts of regime-based modeling have been
theory. proposed: “Takagi—Sugeno”/“Takagi—-Sugeno—Kang (TSK)”
This contribution discusses hoaffine local models in in-  fuzzy models [37] typically compose several affine or linear
put/output form of dynamic TSK fuzzy models can be local dynamic models to form a non-linear global model.
transferred into state-space representation (in controllerThe smooth transition between the local models is achieved
canonical form). The aim is to better understand the im- by weighting each local model. The membership functions,
pact of the constant terms, when transferring analytical which are used for the weighting, express the validity of the
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local models for a given input. Such a model can also be methods [4; 17]. A trajectory generator can be used to com-
written as a “linear/affine time varying system” [49]. pensate the offset terms, which appear in output and system

“Continuous piecewise linear (CPWL) models” are models, equations [12]. An analytical local offset compensation in
where the global model is composed of a set of dynamic tandem with pole placement is proposed in [45]. In [25]
local affine models. In contrast to TSK models, just one the affine model equations are differentiated in order to
model is valid at a time, i.e. the models are switched €liminate the constant, which is referred to as “velocity-
crisply, e.g. [15;24]. A continuous transition between two based” model form. Both, continuous-time [4;7; 12;45] and
neighboring local models (“polytypes”) is enforced by con- discrete-time [17] cases were discussed.

tinuity constraints, which are part of the system descrip-

tion. TSK an_d CPWL models typically f0||OW the con- 3 Dynamic Takagi-Sugeno—Kang Fuzzy

cept of covering the entire subspace of considered system

operations. They use off-line methods for identification. SVStems

“Multi-model"/’multi-controller” approaches use dynamic pynamic TSK fuzzy systems are composed of a set of
linear/affine local models or controllers, which are switched semj-linguistic rules, like the following:

in a crisp manner. It is assumed that models are only avail-

able for some of the operating points. New models are  F(Z11SZ1re)AND. .. AND (Z4 1S Zgrer) THEN f; .

added during operation as required [28; 30]. The premise can be described by a set of scalar fuzzy sets
Radial basis function (RBF) and hyper basis function with the affiliated set of scalar membership functions. Al-
(HBF) networks [31] can be interpreted to follow the con- ternatively, multi-dimensional fuzzy sets/membership func-
cept of a soft composition aftatic local models. tions can be used. Then a premise can be written as: IF

This contribution focuses on TSK fuzzy systems. TSK (Z IS Zief) [3]. A membership function produces a value
fuzzy models are particularly interesting due to their good #i(K) € [0, 1] at each discrete-time instakt which repre-
prediction quality. Their semi-linguistic structure makes S€nts the degree of fulfillment of theh rule. A conclusion

it easier to transfer methods from linear system the- contains a dynamic local modéi. Typically, each conclu-
ory. An example is the “parallel distributed compensator”, sion has the same structure. In case of a SISO model, an
e.g. [47]. Moreover, their affinity to Linear Matrix Inequal- /O type conclusion commonly looks like the following:

ities (LMIs), an area with significant recent progress [5], Y. (k) = 6[Y(k—1),...Y(k—n—1),

makes them attractive.
TSK fuzzy models can be derived from theoretical

models, e.g. by regime-wise approximation of a physi- 0 is the vector of the conclusion parameters. The predic-
cal model [12;19;41], or by identification [2;3;9;21;29; tions of thec local models are superposed fuzzily in order
36]. Reference [13] provides for a more detailed motiva- t0 form the global nonlinear dynamic TSK model: Each

tion and a literature survey. A state-space representatiordocal prediction is weighted with the degree of fulfillment

is advantageous for analysis and controller design. Sev-Of its rule and then summed up to form the global predic-
eral contributions use fuzzy models with local models in tion (Fig. 1):

state-space representation for fuzzy observer and controller ZC (k= 1)Y; (k)

design [7;27], or just for controller design [20; 22;41; 50]. Y(k) = ==L : S Zc o1 (k= 1)Yi (K) .
However, identification algorithms typically yield models > mik=1) =1

in input/output and not in state-space form. The affine na- =1 )

ture of the model is commonly considered in context of
investigating approximation capabilities [32] or in case of i is referred to as “fuzzy basis functionp; = j; holds for
non-state-space TSK fuzzy control applications. Examples®rthogonal membership functions. TSK models with state-
for the latter are: TSK PID controllers [8], TSK time- SPace type conclusions will be discussed further on.
optimal controllers [10], and controller derivation by TSK
fuzzy model identification [37]. However, until recently

“homogeneous” or “linear” TSK fuzzy systems [6;20;22; gll
23;27,;38;39;41;43;44;47-50] were used in context of l‘”l
state-space control and stability analysis due to the easief P Affine |V

handling [17; 46]. This means that each conclusion consisty ¢ | PL_%stem!

of a linear state-space model. Remarks on required research™ | : y
on an affine extension were given in some works [14; écl : ¢ >
19]. Recently, the interest in affine TSK fuzzy state-space . l ’

models rose: Augmentation of the output equations by local N S;\;g‘fc E;

offset terms was proposed. This leaves the system equations

linear and permits regime-wise linear design methods [7].

Adding local offset terms to the system equations was pro-
posed in conjunction with LMI-based analysis and design Figure 1: Composition of an TSK model of ¢ local models.

471


drebing
Schreibmaschinentext


at 10/2004 METHODEN

4 Deriving State-Space Representations As the local model structure is often chosen to be of ARX-
From Affine Local 1/0 Models type, the following representatia;o results (SISO case):

Two alternative transformations of a fuzzy model, which is Z :Y(K) + Zn aYk—j) = Zm blUi(k—1)+&
) . 110 j=1 I=1

composed of a set of affine I/O local models, into a fuzzy )

state-space model will be proposed in the sequel. The first

approach is to treat the constaiffsas offsets on the in- However, with

put signal. (Treatings; as an offset on the output signal n m

provides for corresponding results in the regular case and §=Yo (1+ Zj:l ai) —Yo Z|:1 b

is omitted due to restricted space.) The second approachy,;s i equivalent to the representation derived by lineariza-

IS _to tre_at the _constantg as Independent (constgnt)_ a_d— tion. This means, the affine system can be associated with
ditional input signals. iny state space models |n/S|m|Iar a linear system, where the shifts of input/output quantities
to the cont.ro'ller canc_)nlcgl form (CF) will be conSIde“red- are not known individually but only by cumulated effect.
CFs are minimal realizations of state-space models. “Min- This leads to the question, how the lumped offset tegms

imality” and structure re!ated profpertfieshmalég them inter- g1 be treated. Knowing only one lumped constant per
esting, see [1,11;16;18;33-35] for further discussion on local model, no value is seen in having an (arbitrary) indi-

SIS_O/MIMO CFs. The gontroller CF is particularly inter.— vidual offset on both, input and output.can be treated as
gstmg for cpntroller design. Also, a system re.presenta.tlonbias on the input, as bias on the output signal, or as inde-
in C_F permits to_better exploit r_ec_ent_ progress in n_umerlcal pendent second input signal of a linear model (Fig. 2d—f).
routines for solving convex optimization problems in terms In case of local state-space modélscould also impact

F’f_ _LMIS [5:20; 38;49]. The choice O_f the parameters and a middle element of the state vector. This will not be con-
initial values of state space models in controller CF, which sidered further due to the focus on CFs.

yield equivalent behavior, will be discussed in the following
two subsections. Approach d) or e) in Fig. 2 differ in case that the nominator

or the denominator of thetransfer function, which is asso-
ciated with (4), has zero gain. Zero nominator gain plant
4.1 Interpretation and implications of the local does not permit equilibrium other than with zero output.
constant terms Positioningé as an offset on the plant input would hence
In case a global model is available (e.g. from modeling by not allow adjusting the steady-state output as required. The
first principles), a TSK fuzzy model can be derived by lin- ztransform of (4) is:

earization arounat operating pointsWo;, Yoi) (Fig. 2c). P SO
. e+ b

This provides forc linear local models (Fig. 2b). Classi- Y(2) = T ~U(2)
fiers i have to be determined, which define the validity of I+agz - +anz
each local model. The offsets on inputs and outputs, which 1 £(2).
permit a representation in small-signal/local (linear) coordi- I+az 4. +az "
nates (, y), are known for all local models (Fig. 2b,c): Modeling & as bias on the input means:
n . —1 — _
Y(k)—Yo-i-Z._laj Y(k— j) — Yo) Y@ = b1z 14+ -4+byz™ U(z)—i—(Zm b|) 1‘;§
m 1= 1+az 1+ -+az " =1
=> ., b Uik=h—Uo 3)

K ik i ™ uk—l A zero gain of the nominator of the transfer function
W )+Zj:1 gyk=1) = lel uk=1. (X", b =0) causes a singularity. This is consistent with

Equation (3) assumes no direct transmission. Otherwise, tthheerﬂggle'tlzgvgseggsagit'&l%tl’ﬁ;i't_In such a cgsehould

second summation would start frdm= 0 instead ofl = 1.
For the sake of readability, the index for the local model is bizl+. .. 4+bpz ™ n -1

. ‘ 1y, the 7= 2% - n 7U(z)+<l+§ _ a,-) £
omitted until further notice is given. 1+azi+---+a,z" j=1

Determining a TSK fuzzy model by identification provides A zero denominator gain means an integrating or a not-
for only one lumped offset per local model, see Fig. 2a. dampened oscillating plant. An integrating plant has only

él u, l
U Affine Y | U u Linear
> 10 system O system —>O—> " . .
<) Figure 2: Local dynamic model result-
U U ing from modeling by a) TSK identifi-
&t cation or b+c) linearization of a global
& nonlinear model. Modeling the constant
Li Y U Li Y — > L S
0O S;;?; — > —> S;:tzﬁ —»O—> U, Sy?;?; — > term as d) input offset, e) output offset
4 o f) and f) additional constant input of a lin-
ear system.
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a constant equilibrium in case the input is zero. A not- 1+, & # 0 and in case the system is initially in equi-
dampened oscillating plant has only a constant equilibrium librium,
in case it is not excited by initial values or an external in-

: i § n -1
D}Jt For sugh a plant the oﬁsetshouild be congdered as 5 LU (1+Z- ai) ®)
bias on the input. In the case that neither nominator nor de- i=1

on e . . 210
nominator gain are zero, modelirfggas offset on input or =
output provides for equivalent results. holds for all elements of the initial state-vector Xo. In case

the (non-integrating) system is initially not in equilibrium,
the components of Xg can be calculated by solving a set of
4.2 State-space system with offset on input linear equations (see proof).
signal
An affine local SISO model as of equation (4) can be
rewritten as a linear state-space model with an offset on itsFigure 3 shows the block scheme f@acr. The linear
input signal (Fig. 2d). As the objective is to obtain a struc- controller CF follows directly fo = 0. Note:
ture, which is close to the controller CF, offset and input
are kept as separate additive vectors. Then the following
theorem can be derived:

Proof. The proof is given in appendix A.

i) The physical interpretability of the state (given in case
the state vector is assembled of delayed I/O quantities) is
lost after the transformation int&acg. This is inherent to

Theorem 1. SISO state space model in controller CF CFs.

with offset on input i) An alternative representation, where the state is aug-
A SISO 1/O type (affine) local dynamic model representa- merjted by delayed inputs is described in [22]. While
tion as of equation (4) with the initial values Yo, ... , Y, ha\{lng the same number of ParametBFs m, |t. does not
Usnom ,Upn 1 andwith Y b #0and1<m<nis fulfill the requirement of CFs’ to have a minimal number

equivalent to the minimal representation Sacr: of delay elements.

X(k+ 1) = AX(Kk) + bU1(k) + g%, Xo = X(ko) iii) Y(k+1) is used instead of(k) as this is more suitable

Z . in practical applications of state-space models, where the
ACF Y(k+1) =cX(k+1) output equation is evaluated after the state equation [11].
®) The global state-space model follows by superposiag
with the state vector: affine local dynamic SISO modeBack:
C
XK =[Hk—n+1) Hk- 1)H(k)]T (6) X(k+1) = Zi=1¢i KX (k+1)

and the system matrices and vectors:

0 1 (0) 0 = [Z #i (WA Xi (k)} + [Z b (k)] eU1(k)

— . .ot h— | |- c
o o [T +> pi (g
—ap - e —ag 1 i=1
0 o’ Yk+D =) aikYik+D)
. bm =1 I I
4= 0 T " = Ziczl ¢ (& Xi(k+1) (9)
(erllbl)71 by

with the unit vectore=[(0) 1]". The global fuzzy state-
The initial values Ho, ... , Hh_1 Of Zace can uniquely space model is of explicitly affine form. As the local offsets
be derived from the initial values of %,,0. In case vary in general, there is no constant global offset. Hence,

»
>

Y(k+1)

Figure 3: Affine system
representation as SISO
controller CF, constant
considered as offset on
input (no direct transmis-
sion).
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at 10/2004 METHODEN

the global model cannot be transferred to a linear time  A2:q1,=p8=0, d2=1/ (1+ Zn a,-) (16)
varying (LTV) model. The system equation can be written 1=t

as an affine time-varying SISO model. In case the model is n

of observer CF, the output equation can be written in LTV~ A3:a12=02=0,8= 1/ (1+ Zj_l aj) : (17)

form.
Case Al assumes a plant with nonzero gain of the nomina-

tor of the plant transfer function (3", by # 0). Cases A2
4.3 Treating the offset as a second input of and A3 assume 1+ 3, & # 0. The initial values of the
a MISO state space model three alternative representations can be calculated from the

An affine local model as of equation (4) can be rewrit- 2N of ¥y/0 (see proof): Al has the Same_”;'t'aBloflg

ten as a linear local model where the offset is considered ord 203 ?‘S Speﬁ'f'ed mlT'h'eaJoreg 1 arl‘_('j*ﬂ N he
as an additional (constant) input (Fig. 2f). The follow- an » have the same initial values. Hg = £ Is the element

o nd
ing theorem describes how an affine SISO model can bei‘c the,in't'?l st;te\ég(f:tor: related to .2. _sllfbs_ystem._l!kr)] case
transformed into a linear MISO model in controller CF. +2i & #0andif the systemis initially in equilibrium

Kailath’s scheme Il MIMO CF [16] will be used. How- Ho— Us o (1 no_\1 18
ever, the order of states will be reverted as proposed by 0= 1'0( +Zizla*) (18)

Isermann [11] and Schwarz [34] for the SISO case. holds for all elements of the initial state-vector related to

the 1% subsystem. In case the system is initially not in equi-
librium, the elements of Xy can be calculated by solving
a set of linear eguations.

Theorem 2. MISO state space model in controller CF
with offset treated as second input

An affine S0 1/0 model representation as of equation (4)
can be rewritten as a (linear) MISO 1/0O model by repre-
senting the offset term as an additional input U, = £. This Figure 4 shows the block scheme f&lyce. The MISO
model with initial values Yo, ... , Yo, Utn-m ... ,Urn-1is system resulting from case Al is mathematically similar to
for 1 <m < n equivalent to the MISO controller CF Encr: the SISO system described in Theorem 1, as the offset is
X (K4 1) = AX (K) + BU(K). Xo = X (Ko) handled on the i.nput side. Ip case of A2 the offset is rep-
Z . (10) resented as a direct transmission. Case A3 means that the
MCF Y(k+1) = cX(k+ 1) +dU(k) offset is treated on the output side of the system. Note that
Y(k+1) is used instead o¥(k), as this is more suitable
in practical applications of state-space models, where the

Proof. The proof is given in appendix B.

with the state vector:

XKk = [ Hk—-n+1) --- Hk-1) Hk) H"‘(k)]T output equation is evaluated after the state equation [11].
(11) In order to superposelocal models:
the input vector: Xi(k+1) = AiXi(k) +BiU(k)
UK =[Uik) Ua(k)]T (12) Yi(k+1) = ¢ Xi(k+1) +diU(k) (19)
and system matrices and vectors: to form theglobal model, the control vector is altered to
_ accommodate not only one, but albffsetsg;:
0 1 (0) 0
SRR : U =[U1(k) U2(K) --- Ucra (W],
A=l 0o ... 0 1 |0 | Uua®=6,1=1....c (20)
—%1ln o —faL |“52 Additionally, the following definition is used:
[0 0 T dpi forj =i
: : E)(:‘)] dI Z[dl,l Sl,l e SC,I]saj,I:{ OIfOFJ #' 1] :lv"' 1C
B=lg :|ic=] (13) )
1 0 by Then the global state-space model follows as:
n 1 C
01 g Xkt D=[3" pidoAXiK]
Cc
d=[0 d],Uz(k) =& c11j = &. (14) n [Zi:1¢i (k)Bi] UK
The asterisk (H*) indicates the augmented state-vector Vikot 1 © 0o (k1
element. Xucr can be constructed in 3 alternative ways: (k+1)= [Zi:1¢'( )G Xi (k+ )]
m Cc
Al:app=1 / > b p=d=0 (15) n [Zi=1¢i (k)di] Uk (22)
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Figure 4: Affine system repre-
sentation as MISO controller CF

(U, =8).

Assuming a common stat¥(k) of all local models, the  This meansa; =1, a,=0.5, by =04, b,=0, and
following is obtained: & =-05.

(o}
X(k+1) = (KA [ X(K . .
k+1) [Zi=1¢ *0 ] *0 5.2 State space model with offset on input

+ [Zc oi (k)Bi] UK) Using Theorem 1Xack: (first model) can be directly writ-
=1 ten as:
C
Yk+D=[3" aikeXik+1)] Hio 1 _[ 0 2)[HK-1] [0y [0
. Hk+1) |~ |-05 1|| HK 1 2.5
+[ D e Judo (23) Y(k+1) =[0 0.2][H(k) H(k+ D]
As mentioned before, A1 and A2 yield a system without This is, Zacr1 is given as:
direct trangmission. As in the SISO case, equation (23) can X1(k+ 1) = A1X1(K) 4+ b1U1 (K) + qaéa,
also be written as a LTV MISO model. . X10 = X1(ko)
ACF1’ .

Y1i(k+1) = c1X1(K+ 1)
5 Example with

0 1 0 0
The proposed concepts are illustrated with a simple, but Al—[ 05 1} bl—[ }ql: [5};
frequently used example: the TSK fuzzy model in [40-43; o1
47] with two local models. However, the originally used £&=05.¢c= |:O 2}
linear local state space models are extended by arbitrarily )

chosen offset terms to gain affine local models. For the initial equilibrium scenario, applying (8) provides
for Ho =5 as components of the initial state vector.
5.1 Local models of the original system In case the system is initially not in equilibrium, equation

(34) and equations (35) are used to calculate the unknown
H(0), H(1), andH(2). Straightforward calculations provide

Z :Y(K) =Y(k—1)—0.5Y(k—2) for analytic expressions for this case=®2, m= 2):
/01
+0.2U1(k—1)+0.5

The first local state-space model is given by:

1
H(O) = p [ (b2 —agby) Y(1) — b1 Y(2) + biUl(l)
This meansa; = -1, a =05, by =0.2, b,=0, and

bi
=0.5.
: +b1+b2§}

In the first scenario, the system is initially in equilib- 1 by,
rium with U;(0) = U(1) = 0. Equation (32) provides for HD = — [azblY(l)erzY(z) —DibpUs (D) + b 5}
Y(0) = 1. In the second scenario, the system is initially not 1 rre
in equilibrium. To have a setting similar to the equilibrium H2) == [—azsz(l) + (aghy — a1hy) Y(2) +b3U1(1)
case,U1(0) =0, U;(1) =0, Y(0) =0.5, Y(1) =1 are used. o

This provides forY(2) = 1.25. b% é}

+
The second local state-space model is given by: b1+ by
with o = bg + azb% —azb1bs.

Z :Y(K) = —Y(k—1)—0.5Y(k—2) _
1102 The numerical values areH(0) = —2.5, H(1) =5, and
+0.4Uy(k-=1)-05 H(2) = 6.25 for the given case.
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Using Theorem 13acr2 (second model) follows as: The identification-focused papers typically propose affine
Xo(k+1) = AX(K) + baU1 (K) + Goto, I/O_ models. Contributions on TSK state-space (_:ontrollers

. X0 = Xa(ko) typlcglly neglect the constant term. The most similar works

ACF2 Ya(k+1) = coXa(k+ 1) to this paper are [7;17]. In [7] TSK .state—feedback con-

_ troller and state observer design is discussed. Local state-
with space models in observable CF are used and the constant
A, = [ 0 1 } by = [O} : term is positioned in the output equation. Local pole place-

—05 -1 1 ment is used for controller design. [7] assumes having the
0 071" state-space model to be available, so does paper [17]. The
%2 = [2 5} 162=-050= [0_4} offset is considered in the system equation and no mini-

mal representation is considered in [17]. Controller design
is done numerically via LMI tools. None of both papers
addresses the issue of gaining state space models from the
commonly available local affine 1/O ARX-type models. In
contrast, this work proposed transformations of local affine
I/0 ARX-type models into local linear state space models
in controller CF. The constant term is handled as additional
5.3 State-space model with offset as second input signal or as offset on the input signal. Analytical
input methods for determining initial values, which provide for
identical predictions of models in I/O and state-space no-
tation were proposed. In the presented representation, the
constant term has no impact on shaping the local dynamic

Equation (8) provides foHy = —0.5 for Zacr2 as compo-
nents of the initial state vector for the equilibrium scenatrio.
The case that the system is initially not in equilibrium fol-
lows as for the first model. The global state-space model is
composed as defined in (9).

Alternative A2 is considered as an example. Using Theo-
rem 2, Xucr (first model) can be written as:

H 0 1101 HKk=1} 100 U1(k) characteristics for state-feedback controller design, which
Hk+1) | =|-051]0 H(k) 10 [Uz(k)} follows e. g. the “parallel distributed compensator” concept,
H*(k+1) 0 0| 0 H*(k) 01 e.g. [47]. The offset terms have to be considered when

01" H(k) Un(K designing the steady-state signals. This can be done in dif-

Y(k+1)=|0.2 Hk+1) +[0 2] [Ul(k)} ferent ways, see e.g. [22] for more details. This permits

o H*(k+ 1) 2(K) a fully rigorous treatment of model identification, control

design, and closed-loop simulation studies (and later real-

Equation (18) provides foHo = 0 andH; = 0.5 for the ini- ization)

tial equilibrium scenario. In case the system is initially not
in equilibrium, equation (46) and equations (47) are used The treatment of the constants as additional input signal

to calculate the unknowi(0), H(1), and H(2). Straight-  or as input signal offset have been shown to provide both
forward, but lengthy calculations provide for an analytical for equivalent representations. In practice, the author would
expressionr{= 2, m= 2): use the SISO approach being more compact and straightfor-

1 ward.
HO) == [ (b2 —auby) Y(1) —b1Y(2) + biU1(1)

o Using minimal realizations has pros and cons as compared
by — by +a;b; with non-minimal realization and is finally a matter of per-
1tatay } sonal preference: A disadvantage is the lack of physical

interpretability of the state. On the contrary, minimal and

1 by 4+ asb i
H(Q) = = [azblY(l)—i—sz(Z)—b1b2U1(1)— 2+ a0 :| struptural pr(_)pertles r?lre advantaggpgs. For'(.axample, non-
log l+a+a minimal realizations introduce artificial additional poles,
1 which need to be considered in controller/observer design.
H(2) = = [~a2b2Y(1) + (@zb1 — a1bz) Y(2) + b5U1(1) + né] _
o Using the same (globalurrent state for each local sys-
, aiby — aoby + agh, tem is preferable over independent current local states and
with 1 = 1ta;+ap also the standard in literature (but seldom explicitly stated).

and with o as in case ofSacrs. The numerical values This is achieved b}stat(.l_rgc;or?struct_ion. Then the state of
follow as: H(0) = —25, H(1) =0, H(2) = 1.25, and the Ioca_l models_ is reinitialized _|de_nt|ca_lly for all Ioc_a_l
H*(0) = 0.5. models in each time step [22]. Finding different local ini-
tial states for each regime is more difficult and also makes
system analysis more difficult. It is mentioned that the TSK
fuzzy systems provide per definition forramerical inter-
polation during transitions between the local systems. This
6 Discussion contribution has not discussed aspects of transition between
local systems. Treating an affine system as a LTV system
The presented methods contribute to closing the gap be-provides for little advantage: As eaglarameter of the sys-
tween TSK identification and TSK control-focused papers. tem description is time-varying and depends on the present

The second model follows similarly. The global state-space
model is composed as defined in equations (19)—(23).
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membership, a practical application of standard methodsMultiplication of equation (27) withz~* (1+ Zi“:_la;z*‘)
such as those in [26] is not possible. permits to substitute its ternik(z) (1+ Zi"zlaiz*') with
the right side of equation (28). This results in:

7 Conclusions n . " O, Z®Z
Yo (14 az' | =Y U@z +) b (Sn)q

Affine local I/O models of TSK fuzzy systems, which i=1 =1 i=1 lel by

commonly originate from TSK fuzzy identification, can be (29)

transformed into local linear state-space models with the gefore carrying out the back-transformation into the time
constant terms being correctly treated as offset on inputyomain. assume thdt is modeled as a step change from
or on output signal or as an additional input signal of the g g £, at time —t: &(k) = &1(k+17) with > m. This
model. This approach permitsfermally correct local ap-  means that the second summation on the right side of

plication of linear analytic methods for e. g. state-feedback (29) is constant fok > 0. With this assumption the back-
controller design. The provided analytical formulas to de- {,ansformation yields:_

termine model parameters and initial values make the N m
model transformation quick and easy. Y(k) +ZizlaiY(k— )= Zj:l bjUik—j)+& (30)

These methods fequce, .the.gap between works on TSlﬂNhich is the 1/O representatioB;o according to equation
fuzzy control and identification: TSK control papers do (4)

commonly not consider model derivation. Works on TSK

identification seldom address fuzzy state-space models. ~Part 2 It is believed that considering an initial state

Little discussed were the consequences of the fuzzy com—at k=0 instead ofk=n-—1 makes it easier to follow

o . the proof. For this reason the initial valuég, ... ,
position of the local systems to form a global system:
. - Yn, Uin—ms ... , Uin_1 are replaced by_,, ... , Yo,
Control design methods often focus on designing the local
. ” . . Ui-m, ..., U1 _1 and the value$, ... , H, are replaced
dynamics. The transitions result typically fronumerical by H H
interpolation between the locagnals. Consideration of Y H-n, ..., Ho.
system properties during transitions and shaping transitiond_et’'s assume first the system is in equilibriiak = O for
with analytical methods can be an interesting field for fur- a given inputUs . Xy0 is characterized by the inpli; o
ther research. and the resulting outptiy, Zacr by the inputU; o and the
resulting stateXy. Each element of the state-vecig has
the same valuddg. This is obvious from the block scheme
(Fig. 3): All elements of the delay chain have to have the
same value for equilibrium. Equations (5)—(7) provide for:

Appendices

A Proof of Theorem 1

derives the structure and parametersXcr from Zyo; m—— 1 U0 (31)

Proof [Theorem 1]: The proof consists of two parts: Part 1 Y & 1
0=1<m n
- : E by (l+ _ ai)
Part 2 treats the initial value transformation framyo to I=1 i=1

ZACF. InsertingHg in the output equation (5) yields the same rela-
Part 1: It is to be shown thaEo according to equation (4) ~ tion betweerlJ; o and Yo as Xy, i.e. both representations
is equivalent toSacr according to equations (5)—(7Eace  have the same equilibrium for given inpu o:
can be written as: m
_ m n ! . Yo = Ho (Z b|)
Hk+D=Ui+5/ ) b—>  aHk-i+1 -
(24) m n -1
m (o) (T a) e
Yk+1) = ijl bjH(k—j+2) (25)  Let's assume now the system is not in equilibriatk = 0.

Then the initial values obace can be calculated from the

Applying the zTransformation yields: o - : .
pplying y initial conditions of the equivalent representati@jo by

H(2)z=U.1(2) + Z(s)/ Z.nil b — Z:Ll aH@z solving a linear set of equations. The set of equations is de-
- B (26) rived as following: At timek = 0, X0 relatesYp, Y_1, Y_2,
vee v Yon, Ug g, U o, ..., Uy with each other:
Yoz=S" b H@z 2 27 n m
@2=) ;5K G Y MO+ aY0- ) =e+) bus0-1) (33
where Z(§) denotes thez-Transform of&. Multiplication j=1 =1
with z=* and rewriting of equation (26) provides for: The n componentsHo, H_1, H_», Hy_, of the ini-
n . . z-1 tial state-vectoXp have to be determinedace provides
H(2) 1+Za+'2 =@+ =m—Z2® (28)  for the two equations (24) and (25). To rela®&o and
i=1 lel b Yack, 2ace has to be considered &t= —1 such that the
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most recent quantity ittacr relates to time 0 (avoiding an
unwanted additional unknowH (1))

Ho = U1,—1+?§/ 221 by —Zin:lai H_;

The number of unknowns ie+1: Hg, H_1, H_», ...,

(34)

H_,. The output equation (25) is considered at times

k= —1 to k= —n to provide forn further equations:
m
Yo= ijl bjHi
: (35)
m
Y]_,n = Zl:l b] Hzfnfj

In casem < 2 the n+1 unknowns can be derived from
thesen+1 equations. However, in case > 2 the con-

sideration of the output equation in past times introduces

m— 2 further unknownd_1_, ... , Ho_n_n. The missing

METHODEN

Vo= (143 8) Uk

m .
+2 2, bHk=j+2) (38)
Applying the zTransformation yields:
_ I L —i+1
H2z=U1@-) aH®z (39)

Y(2)z= <1+ Z?Zl aj>_1 Us(2) + ern:l bjH(z)z~1+2
(40)

Multiplication with z=1 and rewriting equation (39) pro-
vides for:

H) (1+) ) az') =@z (41)

Multiplication of (40) withz*(1+ Y, az™') permits to

m— 2 additional equations can be obtained by considering substitute itsH(z)(1+ Zi”:laiZ‘i) term with the right side
the system equations not only at time O but also at timesof (41). This results in:

—1,...,2—m. This yields the additionally require — 2
equations:

Hoi= U1,72+«‘§/ erll b — Zin:l aiH_1
Ho-m=U11-m +§/ Zlnll b — Zin:lai Ho—m-i

These n+1 equations in case ofm<2 (and
n+m-—1 for m> 2) permit to calculate then+1 un-
knowns (andn+m-—1 in case ofm > 2) including the
n componentsHy, H_3, H_», ... , Hi_, of the initial
state-vectoiXp. Q.e.d.

(36)

B Proof of Theorem 2
Proof [Theorem 2]

Alternative Al: In this alternativeU,(k) = ¢ is weighted
with a2 = (3", b)) 1 before being added td;(k) at the

beginning of the delay chain (see Fig. 4). This is mathe- proof. For this reason the initial valuas, ..

matically the same as the previous derivatiorbatr from

Yo differing only by an additional delay element between U; _;and the value$o,

& andY(k+ 1). Though this delay plays no role &4ds con-
stant. (Only in the assumption thatis modeled as a step
change from 0 td&p at time —7, T > m has to be chosen.)

Y(2) (1—|— Zin:laiz—i> =
=(1+0, ai)il Va2 (1+ 3 a2

m .
+2 @z (42)
Before carrying out the back transformation into the time
domain, assume thdt is modeled as a step change from
0 to & at time —71: &(K) = &1(k+ 1) with = > n+ 1. This
means that théJ,(2) related term in (42) is constant for
k > 0. With this assumption back-transformation yields

Yho+) ) aYk—D=£+Y " blik—)) (43)

which is the I/O representatiopo according to equation
(4).

Part 2: It is believed that considering an initial state at
k=0 instead ofk =n—1 makes it easier to follow the
E Yn' Ul,nfm'

., Ugn_1 are replaced byY_n, ..., Yo, Ui_m, ...,
..., Hyarereplaced bH_,, ...,
Ho.

Let's assume first the system is in equilibriiank = O for

Therefore the reader is referred to the proof of Theorem 1.2 9iVen inputUso. Tyo is characterized by the inpliy,o

Alternative A2: In this alternative it is to be shown that
3o according to (4) is equivalent t&ycr according to

and the resulting outpufy, Zmcr by the inputUs ¢ and the
resulting state-vector elemenkf of subsystem 1 andi;
of subsystem 2. Each element of the state-vextgmwhich

equations (10)—(14) with parameterization A2 as of (16). relates to subsystem 1, has the same valyeThis is ob-
The proof consists of two parts: Part 1 derives the struc-vious from the block scheme (Fig. 4): All elements of the

ture and parameters &fycr from 0. Part 2 deals with
the initial value transformation front,,o to Xyce. The

proof has the same concept and structure than the one for

Theorem 1.

Part 1. Yucr as of equations (10)—(14) can be written as:

Hk+D=U10 - Y aHk—i+1) (37)
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delay chain have to have the same value for equilibrium.
Equations (10)—(14) provide for:

U
Ho=$,H§=U2,o=§

(142 ,a)

InsertingHp and Hj in the output equation (10) yields the
same relation betwedd; o, U2 0, andYp as X, i.e. both

(44)
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representations have the same equilibrium for given inputsAlternative A3: In this case it is to be shown that

Ui andUzo=§&: the I/O representationz,o according to equation (4)
m
b.)

(XL, L&
(1+2la) (1+X0a)
()

(1+22,a)

Let's assume now the system is not in equilibriabk = O.
Then the initial values oEyce can be calculated from the
initial conditions of the equivalent systelyo by solving

Yo=Uqo

(45)

is equivalent to the representatioBycr according to
equations (10)-(14) with parameterization A3 correspond-
ing to (17). Zmcr can be written identically as A2 in form
of equations (37) and (38) and therefore it is referred to the
proof of A2.
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a linear set of equations. The set of equations is derived as

following: At time k=0, X0, relatesYy, Y_1, Y_o, ...
Y_n, U 1,Ug 2, ..
equation (33).
To be determined are the componentsHy, H_1, H_j,

, Hi_n of the subsystem 1 part of the initial state-
vector Xo. Hg of subsystem 2 is already known to Be
Ymcr provides for the two equations (37) and (38) with
Ua(k) = §.

To relate 0 and Xmcr, Zmce has to be considered at
k = —1 such that the most recent quantity 3,cr relates
to time O (i.e. to avoid an unwanted additional unknown

H(1)):
n
Ho=Uy_1— Zi:lai H_j

., U _m with each other according to

(46)

The number of unknowns ia+1: Ho, H_1, H_5, ... ,
H_,. The output (38) is considered at tim&s=—1 to
k = —n to provide forn further equations:

n -1 m
Yo=¢ (l+Zj:1aj) +Zj:1 by Haj

: (47)
Yin=¢ (1+ Z'j‘:l aj)fl

In casem < 2 the n+1 unknowns can be calculated out
of thesen+1 equations. However, in cage > 2 the con-
sideration of the output equation in past times introduces
m— 2 further unknowndd_1_, ... , Ho_n_n. The missing
m— 2 additional equations can be obtained by considering
the system equations not only at time O but also at times
—1,...,2—m. This yields the additionally requirem — 2
equations:

n
Ho1=Uy o— Zizl aH_1

" b H
j—1 0 F2=n-]

: 48)
n
Hom=Ug1-m— Zi:l a Ho_m—i

Thesen+ 1 equations in case oh <2 (andn+m—1 for
m > 2, respectively) permit to calculate thet1 unknowns
(andn+m—1 in case ofm > 2, respectively) including
the n componentdHp, H_1, H_», ... , Hy_p of the initial
state-vectorXo. (The additional componerti; is already
known.). Q.e.d.
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