QuickSearch:   Number of matching entries: 0.

Search Settings

    AuthorTitleYearJournal/ProceedingsDOI/URL
    Miguel Mendez, Sebastian Schramm, Robert Schmoll, Andreas Kroll Integration and Evaluation of a High-Precision MotionCam-3D into a 3D Thermography System 2023 Journal of Sensors and Sensor Systems (JSSS), submitted   
    BibTeX:
    @article{Mendez2023c,
     author = {Miguel Mendez and Sebastian Schramm and Robert
    Schmoll and Andreas Kroll},
     journal = {Journal of Sensors and Sensor Systems (JSSS)},
     mrtnote = {peer},
     note = {submitted},
     owner = {mendez},
     title = {Integration and Evaluation of a High-Precision MotionCam-3D into a 3D Thermography
    System},
     year = {2023}
    }
    
    
    Miguel Mendez, Sebastian Schramm, Robert Schmoll, Andreas Kroll Integration of a High-Precision 3D Sensor into a 3D Thermography System 2023 Sensor and Measurement Science International Conference (SMSI) 2023, Nürnberg, AMA Verband für Sensorik und Messtechnik e.V., May  DOI  
    BibTeX:
    @inproceedings{Mendez2023a,
     address = {Nürnberg},
     author = {Miguel Mendez and Sebastian Schramm and Robert
    Schmoll and Andreas Kroll},
     booktitle = {Sensor and Measurement Science International
    Conference (SMSI) 2023},
     date = {2023},
     doi = {10.5162/SMSI2023/E5.2},
     month = {May},
     mrtnote = {nopeer},
     organization = {AMA Verband für Sensorik und Messtechnik e.V.},
     owner = {Mendez},
     timestamp = {2023.01.31},
     title = {Integration of a High-Precision 3D Sensor into a 3D
    Thermography System},
     year = {2023}
    }
    
    
    Sebastian Schramm Bewertung der Zukunftsthemen Thermografie 2022 no. TR-030, Universität Kassel, Technischer Bericht   
    BibTeX:
    @techreport{ZukunftThermografie2022,
     address = {Universität Kassel},
     author = {Sebastian Schramm},
     institution = {FG Mess- und Regelungstechnik},
     mrtnr = {TR-030},
     number = {TR-030},
     title = {Bewertung der Zukunftsthemen Thermografie},
     type = {Technischer Bericht},
     year = {2022}
    }
    
    
    Schramm, Sebastian, Ebert, Jannik, Schmoll, Robert, Kroll, Andreas Compensating the Size-of-Source Effect: Relationship between the MTF and a Data-Driven Convolution Filter Approach 2022 16th Quantitative InfraRed Thermography Conference (QIRT), Paris, Frankreich, 4.-8. Juli   
    BibTeX:
    @inproceedings{SchrammQIRT2022,
     address = {Paris, Frankreich},
     author = {Schramm, Sebastian and Ebert, Jannik and Schmoll,
    Robert and Kroll, Andreas},
     booktitle = {16th Quantitative InfraRed Thermography Conference
    (QIRT)},
     language = {english},
     month = {4.-8. Juli},
     mrtnote = {nopeer,ThermoFusion},
     owner = {schramm},
     title = {Compensating the Size-of-Source Effect: Relationship between the MTF and a Data-Driven Convolution Filter Approach},
     year = {2022}
    }
    
    
    Schmoll, Robert, Schramm, Sebastian and Breitenstein, Tom, Kroll, Andreas Method and Experimental Investigation of Surface Heat Dissipation Measurement using 3D Thermography 2022 Journal of Sensors and Sensor Systems (JSSS), vol. 11, pp. 41-49  DOI , URL  
    BibTeX:
    @article{SchmollJSSS2021,
     author = {Schmoll, Robert and Schramm, Sebastian and
    Breitenstein, Tom and Kroll, Andreas},
     doi = {10.5194/jsss-11-41-2022},
     journal = {Journal of Sensors and Sensor Systems (JSSS)},
     owner = {schmoll},
     pages = {41--49},
     title = {Method and Experimental Investigation of Surface Heat Dissipation Measurement using 3D
    Thermography},
     url = {https://jsss.copernicus.org/articles/11/41/2022/},
     volume = {11},
     year = {2022}
    }
    
    
    Sebastian Schramm, S. Altenburg, R. Krankenhagen, C. Maierhofer, E. Marquardt, W. Mühlberger, F. Nagel, E. Neumann, P. Rohwetter, F. Rutz, N. Scheuschner, C. Schwake, F. Schwaneberg, R. D. Taubert, M. Ziegler Thermografie und Strahlungsthermometrie - Stand und Trends 2021 GMA Fachausschuss 8.16: Temperaturmessung mit Wärmebildkameras, Juni  URL  
    BibTeX:
    @article{GMA_Schramm_2021,
     author = {Sebastian Schramm and S. Altenburg and R. Krankenhagen and C. Maierhofer and E. Marquardt and W. Mühlberger and F. Nagel and E. Neumann and P. Rohwetter and F. Rutz and N. Scheuschner and C. Schwake and F. Schwaneberg and R. D. Taubert and M.
    Ziegler},
     booktitle = {GMA Fachausschuss 8.16: Temperaturmessung mit
    Wärmebildkameras},
     institution = {VDI/VDE-Gesellsschaft Mess- und
    Automatisierungstechnik},
     month = {Juni},
     mrtnote = {nopeer},
     owner = {schramm},
     title = {Thermografie und Strahlungsthermometrie - Stand und
    Trends},
     url = {https://www.vdi.de/ueber-uns/presse/publikationen/details/thermografie-und-strahlungsthermometrie-stand-und-trends},
     year = {2021}
    }
    
    
    Sebastian Schramm, Jannik Ebert, Johannes Rangel, Robert Schmoll, Andreas Kroll Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras 2021 Journal of Sensors and Sensor Systems (JSSS), vol. 10, pp. 207-218  DOI , URL  
    BibTeX:
    @article{Schramm2021JSSS,
     author = {Sebastian Schramm and Jannik Ebert and Johannes Rangel and Robert Schmoll and Andreas
    Kroll},
     doi = {10.5194/jsss-10-207-2021},
     journal = {Journal of Sensors and Sensor Systems (JSSS)},
     mrtnote = {peer, ThermoFusion},
     pages = {207--218},
     title = {Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras},
     url = {https://jsss.copernicus.org/articles/10/207/2021/},
     volume = {10},
     year = {2021}
    }
    
    
    Schramm, Sebastian, Rangel, Johannes, Aguirre Salazar, Daniela, Schmoll, Robert, Kroll, Andreas Target Analysis for the Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral Range 2021 IEEE Sensors Journal, vol. 21, no. 2, pp. 2159-2168  DOI , URL  
    BibTeX:
    @article{SchrammRangel2021,
     author = {Schramm, Sebastian and Rangel, Johannes and Aguirre Salazar, Daniela and Schmoll, Robert and Kroll, Andreas},
     doi = {10.1109/JSEN.2020.3019959},
     journal = {IEEE Sensors Journal},
     mrtnote = {peer,Gas3D, ThermoFusion},
     number = {2},
     pages = {2159-2168},
     title = {Target Analysis for the Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral
    Range},
     url = {https://ieeexplore.ieee.org/document/9178752},
     volume = {21},
     year = {2021}
    }
    
    
    Schramm, Sebastian, Osterhold, Phil, Schmoll, Robert, Kroll, Andreas Combining Modern 3D Reconstruction and Thermal Imaging: Generation of Large-Scale 3D Thermograms in Real-Time 2021 Quantitative InfraRed Thermography Journal, vol. 19, no. 5, pp. 295-311  DOI  
    Abstract: In recent years, due to the availability of affordable 3D sensors and the increased computing power, various methods for the generation of 3D thermograms have been developed. 3D thermal imaging describes the fusion of geometry and temperature data. A well-established approach is the fusion of data from depth and long-wave infrared (LWIR) cameras. However, these models generated in real-time have the limitation that the model size is limited due to inefficient data storage approach. Newer algorithms from Computer Vision promise to overcome this limitation by more efficient data handling and storage. Within this work, three state of the art 3D reconstruction algorithms from the computer vision community are compared and one of these is extended by overlaying thermal data, which allows the creation of large-scale 3D thermograms with a portable 3D measurement system. For this purpose, a geometric calibration is required, the data structure is adapted, and the handling of cyclic non-uniformity corrections required for uncooled LWIR cameras is described. The results will show exemplary 3D thermograms and the advantages compared to current existing systems.
    BibTeX:
    @article{Schramm2021QIRT,
     abstract = {In recent years, due to the availability of affordable 3D sensors and the increased computing power, various methods for the generation of 3D thermograms have been developed. 3D thermal imaging describes the fusion of geometry and temperature data. A well-established approach is the fusion of data from depth and long-wave infrared (LWIR) cameras. However, these models generated in real-time have the limitation that the model size is limited due to inefficient data storage approach. Newer algorithms from Computer Vision promise to overcome this limitation by more efficient data handling and storage. Within this work, three state of the art 3D reconstruction algorithms from the computer vision community are compared and one of these is extended by overlaying thermal data, which allows the creation of large-scale 3D thermograms with a portable 3D measurement system. For this purpose, a geometric calibration is required, the data structure is adapted, and the handling of cyclic non-uniformity corrections required for uncooled LWIR cameras is described. The results will show exemplary 3D thermograms and the advantages compared to current existing systems.},
     author = {Schramm, Sebastian and Osterhold, Phil and Schmoll,
    Robert and Kroll, Andreas},
     doi = {10.1080/17686733.2021.1991746},
     journal = {Quantitative InfraRed Thermography Journal},
     keywords = {3D thermal imaging; sensor data fusion; LWIR; NIR;3D
    reconstruction},
     language = {english},
     mrtnote = {peer, ThermoFusion},
     number = {5},
     pages = {295--311},
     title = {Combining Modern 3D Reconstruction and Thermal Imaging: Generation of Large-Scale 3D Thermograms in Real-Time},
     volume = {19},
     year = {2021}
    }
    
    
    Schramm, Sebastian, Kahl, Matthias, Kroll Andreas Experimentelle messtechnische Charakterisierung der Emissionsgradbestimmung mittels 3D-Thermografie 2021 Universität Kassel, Abschlussbericht, August  URL  
    BibTeX:
    @techreport{Schramm2021WIPANO,
     address = {Universität Kassel},
     author = {Schramm, Sebastian and Kahl, Matthias and Kroll
    Andreas},
     institution = {FG Mess- und Regelungstechnik},
     month = {August},
     mrtnr = {TR-031},
     owner = {schramm},
     timestamp = {2021.08.27},
     title = {Experimentelle messtechnische Charakterisierung der Emissionsgradbestimmung mittels
    3D-Thermografie},
     type = {Abschlussbericht},
     url = {https://www.tib.eu/de/suchen/id/TIBKAT:1777149630},
     year = {2021}
    }
    
    
    Schmoll, Robert, Schramm, Sebastian and Breitenstein, Tom, Kroll, Andreas 3D Thermography for the Measurement of Surface Heat Dissipation 2021 Sensor and Measurement Science International Conference (SMSI) 2021, pp. 187-188, online, AMA Verband für Sensorik und Messtechnik e.V., 03.-06. May  DOI , URL  
    BibTeX:
    @inproceedings{SchmollSMSI2021,
     address = {online},
     author = {Schmoll, Robert and Schramm, Sebastian and
    Breitenstein, Tom and Kroll, Andreas},
     booktitle = {Sensor and Measurement Science International
    Conference (SMSI) 2021},
     doi = {10.5162/SMSI2021/C2.4},
     month = {03.-06. May},
     organization = {AMA Verband für Sensorik und Messtechnik e.V.},
     owner = {schmoll},
     pages = {187--188},
     timestamp = {2021.01.06},
     title = {3D Thermography for the Measurement of Surface Heat
    Dissipation},
     url = {https://www.ama-science.org/proceedings/details/4005},
     year = {2021}
    }
    
    
    Marquardt, Erik, Nagel, Frank, Schwake, Christian, Schramm, Sebastian, Schwaneberg, Falko Leckageortung mittels Thermografiekameras 2021 Technische Sicherheit, vol. November, no. 09-10, pp. 32-33  DOI , URL  
    BibTeX:
    @article{Schramm2021TS,
     author = {Marquardt, Erik and Nagel, Frank and Schwake, Christian and Schramm, Sebastian and Schwaneberg, Falko},
     doi = {10.37544/2191-0073-2021-09-10-32},
     journal = {Technische Sicherheit},
     language = {german},
     mrtnote = {nopeer},
     number = {09-10},
     owner = {schramm},
     pages = {32--33},
     timestamp = {2021.10.06},
     title = {Leckageortung mittels Thermografiekameras},
     url = {https://elibrary.vdi-verlag.de/10.37544/2191-0073-2021-09-10-32/leckageortung-mittels-thermografiekameras-jahrgang-11-2021-heft-09-10},
     volume = {November},
     year = {2021}
    }
    
    
    Kahl, Matthias, Schramm, Sebastian, Neumann, Max, Kroll, Andreas Identification of a Spatio-Temporal Temperature Model for Laser Metal Deposition 2021 Metals, vol. November, no. 12, Multidisciplinary Digital Publishing Institute  DOI , URL  
    BibTeX:
    @article{kahl2021ident2dt,
     article-number = {2050},
     author = {Kahl, Matthias and Schramm, Sebastian and Neumann,
    Max and Kroll, Andreas},
     doi = {10.3390/met11122050},
     issn = {2075-4701},
     journal = {Metals},
     mrtnote = {peer, DigiWerk},
     number = {12},
     publisher = {Multidisciplinary Digital Publishing Institute},
     title = {Identification of a Spatio-Temporal Temperature
    Model for Laser Metal Deposition},
     url = {https://www.mdpi.com/2075-4701/11/12/2050},
     volume = {November},
     year = {2021}
    }
    
    
    Schramm, Sebastian, Osterhold, Phil, Schmoll, Robert, Kroll, Andreas Generation of Large-Scale 3D Thermograms in Real-Time Using Depth and Infrared Cameras 2020 15th Quantitative InfraRed Thermography Conference (QIRT), Porto, Portugal, 6.-10. Juli  DOI , URL  
    BibTeX:
    @inproceedings{SS_QIRT2020,
     address = {Porto, Portugal},
     author = {Schramm, Sebastian and Osterhold, Phil and Schmoll,
    Robert and Kroll, Andreas},
     booktitle = {15th Quantitative InfraRed Thermography Conference
    (QIRT)},
     doi = {10.21611/qirt.2020.008},
     language = {english},
     month = {6.-10. Juli},
     mrtnote = {nopeer,ThermoFusion},
     owner = {schramm},
     timestamp = {2019.12.16},
     title = {Generation of Large-Scale 3D Thermograms in Real-Time Using Depth and Infrared
    Cameras},
     url = {https://qirt.org/archives/qirt2020/papers/008.pdf},
     year = {2020}
    }
    
    
    Sebastian Schramm, Robert Schmoll, Andreas Kroll Compensation of the Size-of-Source Effect of Infrared Cameras Using Image Processing Methods 2019 13th International Conference on Sensing Technology (ICST), Sydney, Australia, 2.-4. Dezember  DOI , URL  
    BibTeX:
    @inproceedings{SS_ICST2019,
     address = {Sydney, Australia},
     author = {Sebastian Schramm and Robert Schmoll and Andreas
    Kroll},
     booktitle = {13th International Conference on Sensing Technology
    (ICST)},
     doi = {10.1109/ICST46873.2019.9047669},
     language = {english},
     month = {2.-4. Dezember},
     mrtnote = {peer,ThermoFusion},
     owner = {schramm},
     timestamp = {2017.11.14},
     title = {Compensation of the Size-of-Source Effect of Infrared Cameras Using Image Processing
    Methods},
     url = {https://ieeexplore.ieee.org/document/9047669},
     year = {2019}
    }
    
    
    Sebastian Schramm 3D-Thermografie: Systeme, Verfahren und Anwendungen 2019 GMA Fachausschuss 8.16: Temperaturmessung mit Wärmebildkameras, VDI/VDE, Januar  URL  
    BibTeX:
    @conference{GMA_Schramm_2019,
     author = {Sebastian Schramm},
     booktitle = {GMA Fachausschuss 8.16: Temperaturmessung mit
    Wärmebildkameras},
     date = {2019.01.29},
     month = {Januar},
     mrtnote = {nopeer},
     organization = {VDI/VDE},
     owner = {scrhamm},
     timestamp = {06.09.2019},
     title = {3D-Thermografie: Systeme, Verfahren und Anwendungen},
     url = {https://www.vdi.de/tg-fachgesellschaften/vdi-gesellschaft-mess-und-automatisierungstechnik/optische-technologien},
     year = {2019}
    }
    
    
    Kroll, Andreas, Schramm, Sebastian Verfahren und Vorrichtung zum Erzeugen eines 3D-Thermogramms 2019 no. DE 10 2019 113 691 B4, Universität Kassel, Patent, EP 3742136 A1  URL  
    Abstract: Gegenstand der Erfindung ist ein Verfahren und eine Vorrichtung zum Erzeugen eines dreidimensionalen Thermogramms einer Objektoberfläche (10), wobei das Verfahren wenigstens die folgenden Schritte umfasst:- Erfassen (100) von geometrischen Daten eines Objekts (1) und Erstellen eines dreidimensionalen Modells des Objekts (1) anhand der erfassten geometrischen Daten,- Erfassen (200) von Wärmestrahlungsmesswerten für Aufpunkte (11) auf der Objektoberfläche (10), wobei je Aufpunkt (11) eine Mehrzahl von Wärmestrahlungsmesswerten aus unterschiedlichen Blickrichtungen (30) auf die Objektoberfläche (10) erfasst wird,- Zuordnen (300) der Wärmestrahlungsmesswerte für die Aufpunkte (11) auf der Objektoberfläche zu Aufpunkten auf der zugehörigen Oberfläche des dreidimensionalen Modells des Objekts (1), wobei jedem Wärmestrahlungsmesswert ein Zenitwinkel (2) zwischen der Blickrichtung (30) und der Oberflächennormale (12) im zugehörigen Aufpunkt (11) zugeordnet wird,- Modellieren (400) des Emissionsgrades der Objektoberfläche (10) je Aufpunkt (11) anhand der Abhängigkeit der Wärmestrahlungsmesswerte von den zugehörigen Zenitwinkeln (2), und- Modellieren (500) der Temperatur der Objektoberfläche (10) je Aufpunkt (11) anhand der Wärmestrahlungsmesswerte, der Zenitwinkel (2) und des Emissionsgrades, und Ausgeben (501) des dreidimensionalen Thermogramms.
    BibTeX:
    @misc{DPatent2019,
     abstract = {Gegenstand der Erfindung ist ein Verfahren und eine Vorrichtung zum Erzeugen eines dreidimensionalen Thermogramms einer Objektoberfläche (10), wobei das Verfahren wenigstens die folgenden Schritte umfasst:- Erfassen (100) von geometrischen Daten eines Objekts (1) und Erstellen eines dreidimensionalen Modells des Objekts (1) anhand der erfassten geometrischen Daten,- Erfassen (200) von Wärmestrahlungsmesswerten für Aufpunkte (11) auf der Objektoberfläche (10), wobei je Aufpunkt (11) eine Mehrzahl von Wärmestrahlungsmesswerten aus unterschiedlichen Blickrichtungen (30) auf die Objektoberfläche (10) erfasst wird,- Zuordnen (300) der Wärmestrahlungsmesswerte für die Aufpunkte (11) auf der Objektoberfläche zu Aufpunkten auf der zugehörigen Oberfläche des dreidimensionalen Modells des Objekts (1), wobei jedem Wärmestrahlungsmesswert ein Zenitwinkel (2) zwischen der Blickrichtung (30) und der Oberflächennormale (12) im zugehörigen Aufpunkt (11) zugeordnet wird,- Modellieren (400) des Emissionsgrades der Objektoberfläche (10) je Aufpunkt (11) anhand der Abhängigkeit der Wärmestrahlungsmesswerte von den zugehörigen Zenitwinkeln (2), und- Modellieren (500) der Temperatur der Objektoberfläche (10) je Aufpunkt (11) anhand der Wärmestrahlungsmesswerte, der Zenitwinkel (2) und des Emissionsgrades, und Ausgeben (501) des dreidimensionalen Thermogramms.},
     address = {Universität Kassel},
     assignee = {Universität Kassel},
     author = {Kroll, Andreas and Schramm, Sebastian},
     language = {german},
     mrtnote = {patent},
     nationality = {Deutsch},
     note = {EP 3742136 A1},
     number = {DE 10 2019 113 691 B4},
     owner = {schramm},
     title = {Verfahren und Vorrichtung zum Erzeugen eines
    3D-Thermogramms},
     type = {Patent},
     url = {https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102019113691B4},
     year = {2019}
    }
    
    
    Sebastian Schramm, Johannes Rangel, Andreas Kroll Data Fusion for 3D Thermal Imaging Using Depth and Stereo Camera for Robust Self-localization 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12.-14. März  DOI , URL  
    BibTeX:
    @inproceedings{SS_SAS2018,
     address = {Seoul, Korea},
     author = {Sebastian Schramm and Johannes Rangel and Andreas
    Kroll},
     booktitle = {IEEE Sensors Applications Symposium (SAS)},
     doi = {https://doi.org/10.1109/SAS.2018.8336740},
     language = {english},
     month = {12.-14. März},
     mrtnote = {peer,ThermoFusion},
     owner = {schramm},
     timestamp = {2017.11.14},
     title = {Data Fusion for 3D Thermal Imaging Using Depth and Stereo Camera for Robust
    Self-localization},
     url = {https://ieeexplore.ieee.org/document/8336740/},
     year = {2018}
    }
    
    
    Sebastian Schramm Zur verbesserten Selbstlokalisation eines 3-D- Thermographie-Messsystems mittels Ergänzung von Stereokameradaten 2017 FG Mess- und Regelungstechnik, Universität Kassel, Masterarbeit, Juli  URL  
    BibTeX:
    @mastersthesis{MA_schramm_2017,
     address = {Universität Kassel},
     author = {Sebastian Schramm},
     month = {Juli},
     mrtnote = {education},
     mrtnr = {194},
     owner = {rangel},
     school = {FG Mess- und Regelungstechnik},
     supervisor = {#jr#},
     timestamp = {2016.10.06},
     title = {Zur verbesserten Selbstlokalisation eines 3-D- Thermographie-Messsystems mittels Ergänzung von Stereokameradaten},
     type = {Masterarbeit},
     url = {https://mrt-pc1.mrt.maschinenbau.uni-kassel.de/MRT/Lehre/Aufgabenstellungen/2016-Schramm-MA-3dThermo.pdf},
     year = {2017}
    }
    
    
    Sebastian Schramm Bestimmung von Geschwindigkeiten aus Bildserien einer Gaskamera 2015 FG Mess- und Regelungstechnik, Universität Kassel, Bachelorarbeit, März  URL  
    BibTeX:
    @mastersthesis{2015-Schramm-BA-Geschwindigkeit,
     address = {Universität Kassel},
     author = {Sebastian Schramm},
     month = {März},
     mrtnote = {education, BioGas},
     mrtnr = {150},
     owner = {dierks},
     school = {FG Mess- und Regelungstechnik},
     supervisor = {#sd#},
     timestamp = {2015.02.03},
     title = {Bestimmung von Geschwindigkeiten aus Bildserien
    einer Gaskamera},
     type = {Bachelorarbeit},
     url = {https://mrt-pc1.mrt.maschinenbau.uni-kassel.de/MRT/Lehre/Aufgabenstellungen/2015-Schramm-BA-Geschwindigkeit.pdf},
     year = {2015}
    }
    
    
    Sebastian Schramm Erstellung und Implementierung eines Visualisierungskonzepts zur Bedienung einer Prozessinsel 2014 FG Mess- und Regelungstechnik, Universität Kassel, Semesterarbeit, Oktober   
    BibTeX:
    @mastersthesis{Schramm2014,
     address = {Universität Kassel},
     author = {Sebastian Schramm},
     month = {Oktober},
     mrtnote = {education, muPlant},
     mrtnr = {128},
     owner = {geiger},
     school = {FG Mess- und Regelungstechnik},
     supervisor = {#ag#},
     timestamp = {2011.04.11},
     title = {Erstellung und Implementierung eines Visualisierungskonzepts zur Bedienung einer Prozessinsel},
     type = {Semesterarbeit},
     year = {2014}
    }
    
    

    Created by JabRef on 17.05.24.